╨╧рб▒с>■ Z╣%"■ j%k%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z%{%|%}%~%%А%Б%В%Г%Д%Е%Ж%З%И%Й%К%Л%М%Н%О%П%Р%С%Т%У%Ф%Х%Ц%Ч%Ш%Щ%Ъ%Ы%Ь%Э%Ю%Я%а%б%в%г%д%е%ж%з%и%й%к%л%м%н%о%п%░%▒%▓%╢%Д,А&А'■'А(№(i)°)_*х*y+i% Root Entry └Fа╘Э╨fю╗└6Щєfю╗║%*WordDocument Е,┬нKObjectPool╡ i└Ы]╘fю╗└Ы]╘fю╗SummaryInformation( ╝╕%¤ ¤ ■ ¤ ■ ¤ ■
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~А%%%%%%%% %
%%%
%%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%-%.%/%0%1%2%3%4%5%6%7%8%9%:%;%<%=%>%?%@%A%B%C%D%E%F%G%H%I%J%K%L%M%N%O%P%Q%R%S%T%U%V%W%X%Y%Z%[%\%]%^%_%`%a%b%c%d%e%f%g%1& ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ Equation Native
■ └FХh CompObj7 └Fжj PIC76316 └F■ META6394 └F■ ''''''' '
'''
''''''''''''''''''' '!'"'#'$'%'&'''(')'*'+','-'.'/'0'1'2'3'4'5'6'7'8'9':';'<'='>'?'@'A'B'C'D'E'F'G'H'I'J'K'L'M'N'O'P'Q'R'S'T'U'V'W'X'Y'Z'['\']'^'_'`'a'b'c'd'e'f'g'h'i'j'k' n'o'p'q'r's't'u'v'w'x'y'z'|'Л'}'~''Б'Б■ ■ Д■ ЖЗИЙКЛМНОПРС■ У■ ■ Ц■ ■ Щ■ ЫЬЭЮЯабв■ д■ ■ з■ ,,,,,,, ,
,,,
,,,,,,,,,,,,,,,,-,,, ,!,",#,$,%,&,',(,),*,+,,,.,>,/,0,1,2,3,4,5,6,7,8,9,:,;,<,=,?,@,A,B,C,D,E,F,G,H,I,J,K,L,M,N,P, Q,R,S, W, X,Y,Z,[,\,],^,_,`,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,{,|,},~,,А,А■РPSymbol-Ё 2
`&+╙ 2
`v=╙
&
√╝"Systemn-Ё╨╧рб▒с>■ L)4T@шш╨╧рб▒с>■ Y╢%╨╧рб▒с>■ ■
└FMicrosoft Word Document
MSWordDocWord.Document.6Ї9▓q╨╧рб▒сransfer function is
EMBED Equation.2
and the high pass transfer function is
EMBED Equation.2
The parameter EMBED Equation.2 has many nick names but in this case it is nothing but a parameter which defines the transfer functions. The sum of the transfer functions is
EMBED Equation.2
The minus in the denominator of the high pass transfer function is the usual phase reversal of the tweeter. The nominators are the same and we can write the sum as
EMBED Equation.2
Which is not ideal.
Second order Wonder transfer function
In this chapter we will develop the second order Wonder transfer functions. We take the standard second order without transfer function phase reversal of the tweeter as a starting point
EMBED Equation.2
Make the addition
EMBED Equation.2
And conclude that the factor EMBED Equation.2 is missing in the denominator. It could be added either in the low pass transfer function or in the high pass, but a more clever way is to define a parameter that controls how big a part of it is put in the each of the transfer functions. We call the parameter EMBED Equation.2 and it can have a value from 0 to 1. If it is 1 EMBED Equation.2 is added in the low pass section and conversely if it is 0, EMBED Equation.2 is added in the high pass section. Now the transfer functions look like this
EMBED Equation.2
EMBED Equation.2
This is Wonder filter transfer functions, but we have the problem that the amplitude characteristics are not symmetrical and therefore the crossover frequency is not EMBED Equation.2 . To handle this minor problem a frequency scaling factor EMBED Equation.2 is added. Now the final transfer functions look like this
EMBED Equation.2
EMBED Equation.2
The circuit
The nominators in the general transfer functions are second order and this tells us we need two inductors/capacitors like we did in the standard filter. The addition of zeros tells us that we have to add some resistors. It is possible to add a resistor in the low pass / high pass circuit in four ways. In parallel or in series with the inductor/capacitor. Lets take the low pass circuit as example
Figure SEQ Figure \* ARABIC 1 Possible resistor placements in low pass filter.
Position 1 will give us damping in the pass band and lower damping factor
Position 2 will be OK
Position 3 will place the resistor in parallel with the load and give no other effect than change the crossover frequency and give a lower input impedance.
Position 4 will be OK
There is two possible circuits in the low pass section and similar reasoning for the high pass circuit will give us two possible circuits here as well. All in all we have 4 combinations of resistor placements and the four filters could rather trivially be named type 1, type 2 , type 3 and type 4.
The type 1 filter has the resistors in position 4.
Figur SEQ Figur \* ARABIC 1 Type 1 Diagram.
The type 2 filter has the resistors in position 2.
Figur SEQ Figur \* ARABIC 2 Type 2 Diagram.
The type 3 filter has a type 2 low pass section and a type 1 high pass section.
Figur SEQ Figur \* ARABIC 3 Type 3 Diagram.
The type 4 filter has a type 1 low pass section and a type 2 high pass section.
Figur SEQ Figur \* ARABIC 4 Type 4 Diagram.
The Wonder filter's general properties
In this section the Wonder filter's general properties will be discussed. It will be concluded that the damping is between the standard 1. and 2. order, some peaking for the woofer/tweeter can occur and unfortunately can the input impedance be to low.
Two parameters EMBED Equation.2 and EMBED Equation.2 controls the individual transfer functions and therefore we need 3D plots of the different properties. We will examine 4 properties: The sum of low pass and high pass damping one octave from the crossover frequency, damping one decade from the crossover frequency, peaking and input impedance.
Amplitude characteristics
Figur SEQ Figur \* ARABIC 5 Amplitude characteristics for 1. order and 2. order Wonder filter Q=1,1, P=0,5.
With a high EMBED Equation.2 and EMBED Equation.2 there is some peaking and a quite sharp roll off in the vicinity of the crossover frequency. Further away from the crossover frequency we have 6 dB/octave roll off like the standard first order filter.
Figur SEQ Figur \* ARABIC 6 Amplitude characteristic for 1. order and 2. order Wonder filter Q=0,25, P=0,5.
With a low EMBED Equation.2 and EMBED Equation.2 there is a no peaking and still 6 dB/octave roll off, but now the output from each speaker is small around the crossover frequency, signaling to us that the speakers are nearly in phase. The damping is even poorer than for the 1. order filter (
If EMBED Equation.2 and EMBED Equation.2 the Wonder filter has exactly the same transfer function as the 1. order filter.
Figur SEQ Figur \* ARABIC 7 Amplitude characteristic for 1. order and 2. order Wonder filter Q=0,7, P=0,9.
More amusement comes if we move EMBED Equation.2 close to 0 or 1. Now the filter becomes asymmetric and the roll off is near 1. order in one section and near 2. order in the other. EMBED Equation.2 close to 1 gives high damping in the bass and EMBED Equation.2 close to 0 gives high damping in the treble.
Figur SEQ Figur \* ARABIC 8 Amplitude characteristic for 1. order and 2. order Wonder filter Q=0,7, P=0,1.
Damping one decade from the crossover frequency
To give an overview of the filter's damping we evaluate the high pass sections damping one decade under the crossover frequency and to this we add the low pass sections damping one decade above the crossover frequency. This gives us one number that is a measure of the filters damping properties and makes it possible to plot the damping as function of the two parameters EMBED Equation.2 and EMBED Equation.2 .
For comparison lets mention the standard 1. order filters damping. It is: Damping decade = 40,1 dB and damping octave = 13,98 dB. The same figures for a 2. order standard filter is: Damping decade = 80 dB and damping octave = YYYYY dB
EMBED Excel.Chart.5 \s
Figur SEQ Figur \* ARABIC 9 Damping decade as function of EMBED Equation.2 and EMBED Equation.2 .
Figur SEQ Figur \* ARABIC 10 Damping decade as function of Q for standard 2. order filter.
Figur SEQ Figur \* ARABIC 11 Damping decade as function of Q, P=0,5.
Damping one octave from the crossover frequency
EMBED Excel.Chart.5 \s
Figur SEQ Figur \* ARABIC 12 Damping octave as function of P and Q.
Peaking
Because the sections are out of phase some peaking can occur, but we must remember that the total of response of the system certainly have no peaking. A lot of peaking is not good, some would say that peaking is not good at all. It raises the distortion because of the increased excursion the drivers are forced to do.
EMBED Excel.Chart.5 \s
Figur SEQ Figur \* ARABIC 13 Peaking as function of P and Q.
Phase characteristics
The phase for the entire system is, as we wanted it to be, 0 at all frequencies. So plotting the total phase response isn't much fun. More entertaining are plots of the phase difference between the drivers, though the amplitude characteristics tells us a lot of this difference. Severe peaking signals a phase difference near 180, and amplitude characteristics 6 dB down at the crossover frequency signals a zero phase difference.
The phase difference between the drivers are XXX for the
Transient responses
Figur SEQ Figur \* ARABIC 15 Transient response for Q=0,7 and P=0,5.
Looking at transient response plots for Wonder filters is boring. What comes in comes out. No time distortion, just lovely pure music. This transient response is the excuse for using these filters and should be compared to the distorted transient response for standard filters. For those who believes it is small differences we talk about I will bring a transient response for the popular 4. order Linkwitz-Riley filter, which is one of the worst filters to distort. Other standard filters except the 1. order are all most as bad. The butterfly behavior in the start of the response is the transient error and the all most non recognizable curve to the right is the steady state response. All the shown filters have 1 kHz crossover frequency and the input signal has a 600 Hz and a 1800 kHz component.
Figur SEQ Figur \* ARABIC 16 Transient response for 4. order Linkwitz-Riley filter.
The big 64.000 $ question is of course how it sounds. Are we capable of hearing this kind of distortion. Many test has been made in the academic world and they shows that the steady state error is XXX if the phase difference between to components in the test signal is > 5 degrees (X,Y,Z). A 4. order filter has a phase shift running from a few degrees in the low frequencies increasing to near 360 degrees at high frequencies and that is a lot.
Input impedance
In this section we will take a closer look at the input impedance, which unfortunately is a major drawback. The type 1 input impedance cannot be easily and intuitively understood but the type 2 can. At first we take a look at the type 2 diagrams to get an intuitively understanding of this circuit. All types are examined closer by the use of 3D plots of the impedance versus EMBED Equation.2 and EMBED Equation.2 .
A look at the diagram for the type 2 filter can give us a hint of the problem.
Figur SEQ Figur \* ARABIC 17 Diagram for type 2 low pass section.
At high frequencies the impedance of EMBED Equation.2 becomes low and the input impedance will approximately be EMBED Equation.2 . If EMBED Equation.2 has a low value we have trouble.
Figur SEQ Figur \* ARABIC 18 Diagram for type 2 high pass section.
The high pass section has its problems at low frequencies. Here it is the low impedance of EMBED Equation.2 combined with a possible low EMBED Equation.2 value.
A closer inspection of the design formulas for the two resistors is necessary to get a closer understanding of the problem.
EMBED Equation.2
EMBED Equation.2
We see that the resistor values are proportional to the drivers impedance's. The fractions are each others reciprocals and if one is big the other is small. Low EMBED Equation.2 values gives us a small EMBED Equation.2 and a big EMBED Equation.2 .
Figur SEQ Figur \* ARABIC 19 Input impedance for Q=0,7 and P=0,1.
Figur SEQ Figur \* ARABIC 20 Input impedance for Q=0,7 and P=0,9.
Figur SEQ Figur \* ARABIC 21 Input impedance for Q=0,7 and P=0,5.
EMBED Excel.Chart.5 \s
Figur SEQ Figur \* ARABIC 22 Minimal type 1 input impedance as function of P and Q.
The type 1 filter gives acceptable input impedance levels if EMBED Equation.2 and EMBED Equation.2 is low.
EMBED Excel.Chart.5 \s
Figur SEQ Figur \* ARABIC 23 Minimal type 2 input impedance as function of P and Q.
The type 2 filter gives input impedance levels around half of the driver impedance's if EMBED Equation.2 and EMBED Equation.2 is low.
EMBED Excel.Chart.5 \s
Figur SEQ Figur \* ARABIC 24 Minimal type 3 input impedance as function of P and Q.
Type 3 is suitable for asymmetric filters with low EMBED Equation.2 and EMBED Equation.2 values.
EMBED Excel.Chart.5 \s
Figur SEQ Figur \* ARABIC 25 Minimal type 4 input impedance as function of P and Q.
Type 4 is suitable for asymmetric filters with EMBED Equation.2 values close to 1 and low EMBED Equation.2 values.
Unfortunately are one of the filter types capable of giving sufficiently high input impedance with high EMBED Equation.2 values. This is a very serious limitation to the filters usefulness.
Development of design formulas
The design formulas are develop by comparing the general transfer functions with the actual transfer functions for the circuits. This gives us as many equations as there is unknowns and this equals the number of components. The development of the design formulas is nothing but mathematical manipulation of these equations and the operation will be bypassed here because it will fill more than 20 pages.
Type 1 transfer functions
Low pass section
EMBED Equation.2
High pass section
EMBED Equation.2
Type 2 transfer functions
Low pass section
EMBED Equation.2
High pass section
EMBED Equation.2
Design formulas for type 1
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2 : Woofer impedance in ohm
EMBED Equation.2 : Tweeter impedance in ohm
EMBED Equation.2 : Crossover frequency in Hz
EMBED Equation.2 : Adjust crossover frequency
EMBED Equation.2 : Filter parameters for 2. order Wonder filters
The allowed range for EMBED Equation.2 is 0< EMBED Equation.2 <1. Please observe that this circuitry cannot implement EMBED Equation.2 and EMBED Equation.2 .
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
PQ>0.10.3000.20.4000.30.4580.40.4900.50.5000.60.4900.70.4580.80.4000.90.300Figure SEQ Figure \* ARABIC 2 Not allowed Q's as function of P.
Design formulas for type 2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
The allowed range for EMBED Equation.2 is 0< EMBED Equation.2 <1. Please observe that this circuitry cannot implement EMBED Equation.2 and EMBED Equation.2
Power calculations
Type1
Figur SEQ Figur \* ARABIC 26 Type 1. Max voltage over resistors as function of EMBED Equation.2 .
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2 and EMBED Equation.2 XXXXXX
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2 and EMBED Equation.2 are
EMBED Equation.2
EMBED Equation.2
An example
EMBED Equation.2
EMBED Equation.2
Type 2
Design
Hopefully these design examples show some of the best compromise filters. The low input impedance is the most limiting factor, when we chose the parameter values. All designed filters are with ideal 8 ohm driver impedance and crossover frequency 1000 hz so it is possible to compare the four filter types.
A type 1 design example
EMBED Equation.2
Figur SEQ Figur \* ARABIC 28 Minimum impedance as function of EMBED Equation.2 , EMBED Equation.2 .
A minimum impedance of 4 ohm is satisfactory so we chose EMBED Equation.2 .
The low pass section
The low pass section is type 1 and therefore we use the formulas from REF _Ref373636663 \n 5.
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
The high pass section
The high pass section is type 1 and therefore we use the formulas from REF _Ref373636663 \n 5.
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
Performance
Figur SEQ Figur \* ARABIC 29 Amplitude characteristics for 1. order and example filter.
The Wonder filter gives approximately 3 dB more damping a decade away from the crossover frequency, but in the vicinity of the crossover frequency the 1. order filter actually damps more.
Figur SEQ Figur \* ARABIC 30 Input impedance for example filter.
The input impedance dips nearly down to 4 ohm at the crossover frequency. The 1. order standard filter has 8 ohm input impedance at all frequencies.
Figur SEQ Figur \* ARABIC 31 Phase difference between low- and high-pass sections.
The phase difference is 109 degrees at the crossover frequency. The 1. order filter has 90 degrees phase difference at all frequencies and therefore a slightly better radiation pattern XXXXXX ???????
The Wonder filter gives a little more damping, but it is at the cost of a lower input impedance and at the price of 4 more components.
We can conclude that the 2. order Wonder type 1 filter is not much more attractive than the 1. order standard filter.
A type 2 design example
A type 2 filter has very low input impedance for EMBED Equation.2 so we choose EMBED Equation.2 . The input impedance now only depends on EMBED Equation.2 . We know that a high EMBED Equation.2 value is necessary if we want more damping than the standard 1. order filter can give us, so we trade input impedance for damping. To decide exactly how high we can go, we make a plot with the input impedance as function of EMBED Equation.2 .
Figur SEQ Figur \* ARABIC 32 Minimum input impedance as function of Q.
Figur SEQ Figur \* ARABIC 33 Damping octave as function of Q, P=0,5.
We choose EMBED Equation.2 . This gives a quite low input impedance of only 2.06 ohm.
The low pass section
The low pass section is type 2 and therefore we use the formulas from REF _Ref373636719 \n 6.
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
The high pass section
The low pass section is type 2 and therefore we use the formulas from REF _Ref373636719 \n 6.
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
Performance
Figur SEQ Figur \* ARABIC 34 Amplitude characteristics for 1. order and example filter.
Here we see our success in trading input impedance for damping. The amplitude characteristics for the Wonder filter is approximately 4 dB lower than the 1. order filter except in the vicinity of the crossover frequency where the Wonder filter peaks a few dB's.
Damping decade is 48.92 dB and damping octave is 15.70 dB.
Figur SEQ Figur \* ARABIC 35 Input impedance for example filter.
The cost of the trade is clearly seen here. The input impedance is very low in a broad frequency range around the crossover frequency.
A type 3 design example
From the minimum input impedance plots and from the knowledge of the damping characteristics we decide to implement a Wonder filter with EMBED Equation.2 . Deciding the value of EMBED Equation.2 is not quite as straight forward. High EMBED Equation.2 gives better damping, more peaking and lower minimum input impedance. Because of the implementation we also have a limit on how small a value we can select.
At first the implementation limit is investigated. From earlier we have the formula
EMBED Equation.2
Inserting EMBED Equation.2 gives
EMBED Equation.2
EMBED Equation.2
If this inequality barely is satisfied it gives a small EMBED Equation.2 and a big EMBED Equation.2 which is good. We choose EMBED Equation.2 . XXXXXXXXXXX
The low pass section
The low pass section is type 2 and therefore we use the formulas from REF _Ref373636719 \n 6.
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
The high pass section
The high pass section is type 1 and therefore we use the formulas from REF _Ref373636663 \n 5.
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
Performance
Damping decade 41.8 dB, damping octave 13.66 dB, minimum impedance 4.11 ohm. If these figures are compared with the 1. order standard filter's data it can be seen that the increased circuit complexity has given us nothing but a lower input impedance.
A type 4 design example
A type 4 filter has the highest input impedance in the area where EMBED Equation.2 and EMBED Equation.2 . A higher EMBED Equation.2 and a EMBED Equation.2 close to 1 gives more damping but a lower input impedance. It is necessary to make a compromise between damping and input impedance. How low an input impedance one can live with is hard to say in general, but I find 4 ohm in a 8 ohm system all right. In this example I choose EMBED Equation.2 and EMBED Equation.2 . Table XXX gives us EMBED Equation.2 .
The low pass section
The low pass section is type 1 and therefore we use the formulas from REF _Ref373636663 \n 5.
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
The high pass section
The high pass section is type 2 and therefore we use the formulas from REF _Ref373636719 \n 6.
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
Performance
Figur SEQ Figur \* ARABIC 36 Amplitude characteristics for 1. order and example filter.
Figur SEQ Figur \* ARABIC 37 Input impedance for example filter.
Damping decade = 44.95dB Damping octave =13.82dB
Other possibilities
The standard asymmetric 2./1. order filter is very good with a very low phase shift and a fair amplitude characteristic. This filter uses fewer components than the Wonder filters and it is quite attractive. The reverse combination with 1. order low pass and 2. order high pass is not so good.
It also possible to combine Wonder sections with standard 1./2. order sections, but the examination of these half Wonder filters are out of this articles scope.
Tables
Optimization of crossover frequency
No asymmetric filter has the crossover frequency at EMBED Equation.2 . The cross frequency depends on all filter parameters, in the case of 2. order Wonder filters it is EMBED Equation.2 and EMBED Equation.2 . To take care of this dependency it is necessary to choose a range of the parameters and evaluate the crossover frequency correcting parameter EMBED Equation.2 at all EMBED Equation.2 and EMBED Equation.2 combinations. This table show the value of the EMBED Equation.2 for 400 parameter combinations.
SFinks
Figur SEQ Figur \* ARABIC 27 A
SKROT
Just to be sure we did the right thing we can add those transfer functions and verify that the sum is 1
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
EMBED Equation.2
How lucky we are !
Asymmetric 2./1. order standard filter
The standard asymmetric 2./1. order filter is very good as this chapter will show.
NameQXZError1Error2Index1Opt Err10.30.5586361.741830.8289110.01401116.3487Opt Err20.30.5602801.741830.8289110.01395216.3487Opt Inx10.30.5588691.742810.8289690.01398916.3455Figure SEQ Figure \* ARABIC 3 Tweeter in phase.
Design
The low pass section
Standard formulas
EMBED Equation.2
EMBED Equation.2
Extended formulas
EMBED Equation.2
EMBED Equation.2
VVVVVVVVV
EMBED Equation.2
EMBED Equation.2
The high pass section
Standard formulas
EMBED Equation.2
Extended formulas
EMBED Equation.2
VVVVVVVVVV
EMBED Equation.2
Performance
Damping octave 13.72dB, Damping decade 42.83dB
Figur SEQ Figur \* ARABIC 38 Amplitude characteristics for example filter.
Figur SEQ Figur \* ARABIC 39 Input impedance for example filter.
DKC Aalborg edited last time d. DATE 20-12-96
Side PAGE 33
Щ
дВ.е╞Aжзиайак╢g:бшИlшш ╛3Ъ3╘° Ъ3C ╠╘°╘°(°╘░fААААААААА└└└ААА Є"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є № № № № № № № № Є Є Є/ " "" №╠ " ╠ " ╠ " № " № "" " " " " "" " Є/ / № № № № № № № № Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є ┬ №┬""""""""""""""""""""" №┬╧ Є ┬ Є Є Є Є Є Є Є Є Є Є Є Є № Є № Є № Є № Є № Є № Є № Є № № Є № Є № Є/ № " № №╠╧ "/ № ╧ Є/ № ╧ " № ╠╧ " № № " Є №╠╧ "/ Є Є/ Є"""" " " №╠╧№╠ " № ╧№ Є"""" "/ № ╠╠ Є Є/ № ╧№ Є " № ╧╧№ ╠╧╠╠ № № № № № № № № № № № № № № № № Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є ┬ Є №┬""""""""""""""""""""" №┬╧ ┬ Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є Є / Є Є Є / Є/ Є //ЄЄ // Є //ЄЄ /Є ╠ №╧ Є ╠╠╠╠" /ЄЄ // ╠╠╠╠""""""""╠╠╠╠ Є / / /╠╠╠╠""""""""""""""""""""""""""""" //ЄЄ // №┬╧ / Є/ " " / ╠, " / Є ┬ / ЄЄ ЄЄ " / №/ Є / Є Є Є / / / / Є / Є / Є "" Є" Є"/ Є"/ / Є / Є / Є / Є №╠ ╠╧ / № Є № № ╧ / № Є № №╠╧ / № Є № № ╧ / №╠ Є № № ╧ / № Є № №╠╧ / Є / Є / Є / Є / Є / Є / Є / Є Є / Є / Є Є / Є/ / Є //ЄЄ // / Є""""""""╠╠╠╠" //ЄЄ / ╠╠╠╠""""""""/ //ЄЄ // //ЄЄ // Є / Є Є / Є №╠ ╧ № ╧ № ╧ №╠ Ъl:{$╨пўшш 066Щa 6C ╠ЩaЩa(aЩФkААААААААА└└└ААА ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ №╧ №╧ ЁЁ Є""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""/ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""/ ЁЁ ╠, / ╠, / ЁЁ №/ / №/ / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / ╧ / ЁЁ / / ╧ / ЁЁ / / ╧ / ЁЁ / / ╧ / ЁЁ / / ╧ / ЁЁ / / ╧ / ЁЁ / / ╧ / ЁЁ / / ╧ / ЁЁ ╧ / / ЁЁ ╧ / " / ЁЁ ╧ / Є/ / ЁЁ ╧ / Є"/ / ЁЁ ╧ / Є/ / ЁЁ ╧ / Є"/ / ЁЁ ╧ / Є/ / ЁЁ ╧ / Є/ / ЁЁ Є / №╠ Є/ / ЁЁ Є/ / ╧╧ ╧ Є/ / ЁЁ Є/ / ╠╧ № Є"/ / ЁЁ Є/ / ╧№ ╧ Є/ / ЁЁ Є/ / ╧№№ ╧ Є"/ / ЁЁ Є"/ / ╠╠№╠ Є/ / ЁЁ Є/ / " / ЁЁ Є/ / " / ЁЁ Є/ ╧ / ╧ ЁЁ ╧╧ № Є/ ╧ ╧ ╧ ЁЁ ╠╧ № Є"/ ╧ ╧ ╧ ЁЁ ╧№ № Є/ ╧ ╧ ╧ ЁЁ ╧№№╠ Є"/ ╧ ╧ ╧ ЁЁ ╠╠ № Є/ ╧ ╧ ╧ ЁЁ " ╧ ╧ ╧ ЁЁ " ╧ ╧ ╧ ЁЁ / / ╧ / ЁЁ ╧ " ╧ " ЁЁ ╧ Є/ ╧ Є/ ЁЁ ╧ Є" ╧ Є" ЁЁ ╧ №╠ " ╧ №╠ " ЁЁ ╧ №№ ╧№ Є/ ╧ №№ ╧№ Є/ ЁЁ ╧ №╠ ╠╠ Є/ ╧ №╠ ╧№ Є/ ЁЁ ╧ № ╧╧№ Є/ ╧ № ╧╧№ Є/ ЁЁ ╧ № ╧╧№ Є" № ╧╧№ Є" ЁЁ / №╠╧╠╠ " Є №╠╧╠╧ " ЁЁ / Є/ / Є/ ЁЁ / Є/ Є Є/ ЁЁ / Є/ Є Є/ ЁЁ / Є" Є Є" ЁЁ / " / " ЁЁ / Є Є/ Є ЁЁ / ╧ Є ╧ ЁЁ / ╧ / ╧ ЁЁ / ╧ Є ╧ ЁЁ / ╧ №╠ ╠╧ Є ╧ ЁЁ / ╧ № № ╧ Є ╧ ЁЁ / ╧ № № ╧ Є ╧ ЁЁ / ╧ № № ╧ / ╧ ЁЁ ╧ ╧ № № ╧ Є/ ╧ ЁЁ ╧ / № №╠ Є / ЁЁ ╧ / / / ЁЁ ╧ / Є / ЁЁ ╧ / Є / ЁЁ ╧ / Є / ЁЁ ╧ / Є / ЁЁ ╧ / / / ЁЁ ╠╠ ╠╧ / / Є/ / ЁЁ ╧ № ╧ / / Є / ЁЁ ╧ №╠╧ / / / / ЁЁ ╧ № ╧ """" / Є / ЁЁ ╧№№ ╧ / Є / ЁЁ №╠№╠╧ / Є / ЁЁ """" / Є / ЁЁ / / / / ЁЁ / Є/ / ЁЁ ╧ / ╧ / ЁЁ ╧ / ╧ / ЁЁ ╧ / ╧ / ЁЁ ╧ / ╧ / ЁЁ ╧ / ╧ / ЁЁ ╧ / ╠╠ ╠╧ ╧ / ЁЁ ╧ / ╧ № ╧ ╧ / ЁЁ ╧ / ╧ № ╧ ╧ / ЁЁ / / ╧ № ╧ / / ЁЁ / / ╧№№ ╧ / / ЁЁ / / №╠№╠ / / ЁЁ ╠╧№╠ / / / / ЁЁ ╧ ╧№ / / / / ЁЁ ╧ ╠╠ / / / / ЁЁ ╧ ╧№ / / / / ЁЁ ╧ ╧№ / / / / ЁЁ ╧ ╠╠ / / / / ЁЁ / / / / ЁЁ / / / / ЁЁ / / Є Є / / ЁЁ / / Є Є / / ЁЁ / / Є Є / / ЁЁ №/ / Є Є №/ / ЁЁ """"""""""""""""""",╠╠╠╧ / / / /╠╠╠╠""""""""""""""""""""""""""""""" """"""""""""""""""",╠╠╠╧" Є"╠╠╠╠""""""""""""""""""""""""""""""""""""""" ЁЁ Є " " " / ╠╠ Є Є ╠╠ ЁЁ Є " " " / №╧ Є Є №╧ ЁЁ / Є / Є / Є / Є Є Є ЁЁ Є"/ Є"/ Є"/ Є"/ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁЁ Ъl:╩$╨▄ўшш 066Щd 6C ╠ЩdЩd(dЩФkААААААААА└└└ААА №╧ №╧ Є""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""/ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""/ ╠, / ╠, / №/ / №/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / ╧ / / / ╧ / / / ╧ / / / ╧ / / / ╧ / / / ╧ / / / ╧ / / / ╧ / / ╧ ╧ / ╧ " ╧ / ╧ Є ╧ / ╧ / ╧ / ╧ / ╧ / ╧ / ╧ / ╧ / ╧ / ╧ Є ╧ ╧ / "/ / ╧ Є/ " Є/ ╧ Є/ Є Є/ ╧ " / " ╧ №╠ " №╠ ╠╧ / №╠ " ╧ №№ ╧№ " № № ╧ / №№ ╧№ " ╧ №╠ ╠╠ Є" № № ╧ / №╠ ╧№ Є" ╧ № ╧╧№ Є/ № № ╧ Є № ╧╧№ Є/ ╠╠ ╠╧ / № ╧╧№ " № № ╧ "/ № ╧╧№ " ╧ № ╧ / №╠╧╠╠ " № №╠ " №╠╧╠╧ " ╧ №╠╧ """" " Є " ╧ № ╧ Є" / Є" ╧№№ ╧ Є/ / Є/ №╠№╠╧ Є" / Є" """" " / " / Є/ Є Є/ "/ ╧ ╧ " ╧ ╧ ╧ Є ╧ ╧ ╧ / ╧ ╧ ╧ / ╧ ╧ ╧ / ╧ ╧ ╧ / ╧ ╧ ╧ Є ╧ ╧ ╧ "/ ╧ / / ╧ / / / ╧ / / / ╧ / / / ╧ / / / ╧ / / / ╧ / / / ╧ / / / ╧ / / / / / / / / / / / / / / / / / / / / / / / ╠╠ ╠╧ / / / / ╧ № ╧ / / / / ╧ № ╧ / / / / ╧ № ╧ / / / / ╧№№ ╧ / / / / №╠№╠ / / ╠╧№╠ / / / / ╧ ╧№ / / / / ╧ ╠╠ / / / / ╧ ╧№ / / / / ╧ ╧№ / / / / ╧ ╠╠ / / / / / / / / / / Є / / / / / Є / / / / / Є / / / ╠ №╧ №/ / ╠ Є / ╠ №/ / """"""""""""""""""",╠╠╠╧ / / / /╠╠╠╠""""""""""""""""""""""""""""""" """"""""""""""""""",╠╠╠╧" ""╠╠╠╠""""""""""""""""""""""""""""""""""""""" №┬╧ Є " " " / ╠, ╠╠ №┬╧ Є / №┬╧ ╠╠ ┬ Є " " " / №/ №╧ ┬ Є / ┬ №╧ Є / Є / Є / Є / Є / Є Є / Є Є Є"/ Є"/ Є"/ Є"/ / Є Є Є / Є Є Є / Є Є Є / Є Є Є / Є Є Є / Є Є Є / Є Є Є / Є №╠ Є Є ╧╧ № / Є ╧╧ ╧ Є Є ╠╧ № / Є ╠╧ № Є Є ╧№ № / Є ╧№ ╧ Є Є ╧№№╠ / Є ╧№№ ╧ Є Є ╠╠ № / Є ╠╠№╠ Є Є / Є Є Є / Є Є Є / Є Є Є / Є Є Є Є / / / Є Є / / Є Є Є Є/ " / Є Є Є/ " Є Є //ЄЄЄЄ / Є //ЄЄЄЄ Є Є""""""",╠╠╠╧ ///ЄЄ "╠╠╠╠"""""""/ Є""""""",╠╠╠╧ ///ЄЄ "╠╠╠╠"""" ////ЄЄ ////ЄЄ " Є / " Є / Є Є / Є Є / ╥p:{$nпQ шш L8(8Яa (8C ╠ЯaЯa(aЯ╠oААААААААА└└└ААА ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ╠ ╠ ЁЁ Є""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""/ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""/ ЁЁ №┬╧ / №┬╧ / ЁЁ ┬ / ┬ / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / / ЁЁ Є / Є/ / ЁЁ Є / Є/ / ЁЁ Є / Є"/ / ЁЁ Є / Є/ / ЁЁ Є / Є"/ / ЁЁ Є / Є/ / ЁЁ Є / Є/ / ЁЁ Є / №╠ Є/ / ЁЁ Є / ╧╧ ╧ Є/ / ЁЁ Є / ╠╧ № Є"/ / ЁЁ Є / ╧№ ╧ Є/ / ЁЁ Є / ╧№№ ╧ Є"/ / ЁЁ Є / ╠╠№╠ Є/ / ЁЁ Є / " / ЁЁ Є / Є / ЁЁ Є ╧ Є ╧ ЁЁ Є ╧ № ╧ ЁЁ Є ╧ № ╧ ЁЁ Є ╧ № ╧ ЁЁ Є ╧ № ╧ ЁЁ Є ╧ № ╧ ЁЁ Є ╧ № ╧ ЁЁ Є ╧ № ╧ ЁЁ № / № / ЁЁ № " № " ЁЁ № Є/ № Є/ ЁЁ № Є" № Є" ЁЁ № №╠ " № №╠ " ЁЁ № №№ ╧№ Є/ № №№ ╧№ Є/ ЁЁ № №╠ ╠╠ Є/ № №╠ ╧№ Є/ ЁЁ № № ╧╧№ Є/ № № ╧╧№ Є/ ЁЁ ╠╠ ╠╧ Є № ╧╧№ Є" № ╧╧№ Є" ЁЁ ╧ № ╧ Є №╠╧╠╠ " Є/ №╠╧╠╧ " ЁЁ ╧ №╠╧ Є"""/ Є/ / Є/ ЁЁ ╧ № ╧ Є/ Є Є/ ЁЁ ╧№№ ╧ Є/ Є Є/ ЁЁ №╠№╠╧ Є"""/ Є" Є Є" ЁЁ Є " / " ЁЁ Є Є" Є ЁЁ № ╧ Є/ ╧ ЁЁ № ╧ / ╧ ЁЁ № ╧ Є ╧ ЁЁ № ╧ №╠ ╠╧ Є ╧ ЁЁ № ╧ № № ╧ Є ╧ ЁЁ № ╧ № № ╧ Є ╧ ЁЁ № ╧ № № ╧ / ╧ ЁЁ № ╧ № № ╧ Є" ╧ ЁЁ Є / № №╠ Є/ / ЁЁ Є / / / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / / / ЁЁ Є / Є" / ЁЁ Є / Є/ / ЁЁ Є / / / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / / / ЁЁ Є / Є" / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / № / ЁЁ Є / ╠╠ ╠╧ № / ЁЁ Є / ╧ № ╧ № / ЁЁ Є / ╧ № ╧ № / ЁЁ Є / ╧ № ╧ Є / ЁЁ Є / ╧№№ ╧ Є / ЁЁ Є / №╠№╠ Є / ЁЁ ╠╧№╠ Є / Є / ЁЁ ╧ ╧№ Є / Є / ЁЁ ╧ ╠╠ Є / Є / ЁЁ ╧ ╧№ Є / Є / ЁЁ ╧ ╧№ Є / Є / ЁЁ ╧ ╠╠ Є / Є / ЁЁ Є / Є / ЁЁ Є / Є / ЁЁ Є / /Є Є / ЁЁ Є / /Є Є / ЁЁ Є / /Є Є / ЁЁ ╠ ╠ ┬ / /Є ┬ / ЁЁ """"""""""""""""""",╠╠╠╧ / / / /╠╠╠╠"""""""""""""""""""""""""""""""/ """"""""""""""""""",╠╠╠╧"/Є"╠╠╠╠""""""""""""""""""""""""""""""""""""""" ЁЁ №┬╧ Є " " " / №┬╧ №╠╧ /Є №╠╧ ЁЁ ┬ Є " " " / ┬ ╠ /Є ╠ ЁЁ Є / Є / Є / Є / Є Є /Є ЁЁ Є Є"/ Є"/ Є"/ Є"/ Є ЁЁ Є Є ЁЁ Є Є ЁЁ Є Є ЁЁ Є Є ЁЁ Є Є ЁЁ Є Є ЁЁ Є ╧╧ № Є ЁЁ Є ╠╧ № Є ЁЁ Є ╧№ № Є ЁЁ Є ╧№№╠ Є ЁЁ Є ╠╠ № Є ЁЁ Є Є ЁЁ Є Є ЁЁ Є Є ЁЁ Є Є ЁЁ Є Є / Є Є ЁЁ Є Є / Є Є ЁЁ Є //ЄЄ // Є ЁЁ Є //ЄЄ // Є ЁЁ Є""""""",╠╠╠╧ /ЄЄЄЄ "╠╠╠╠"""""""" ЁЁ //ЄЄЄЄ ЁЁ " / / ЁЁ Є / / ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁЁ юr:{$╛п~ шш Z969вa 69C ╠вaвa(aвшqААААААААА└└└ААА Ё ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ №╧ №╧ ЁЁ """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" Є""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" ЁЁ ╠, Є ╠, Є ЁЁ №/ Є №/ Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ Є ╧ Є ЁЁ " Є ╧ Є ЁЁ " Є ╧ Є ЁЁ "" Є ╧ Є ЁЁ " Є ╧ Є ЁЁ " Є ╧ Є ЁЁ " Є ╧ Є ЁЁ " Є ╧ Є ЁЁ "" № № ЁЁ №№ ╧ " № " № ЁЁ №╠ ╧ "" № Є № ЁЁ № ╧ ╧ " № / № ЁЁ № ╧╠╧ " № / № ЁЁ №╠╧ ╧ " № / № ЁЁ " № / № ЁЁ " № Є № ЁЁ / Є "/ Є ЁЁ ╧ " " " ЁЁ ╧ " Є " ЁЁ ╧ Є/ / Є/ ЁЁ ╧ ╠╧ Є/ №╠ ╠╧ / ╠╧ Є/ ЁЁ ╧ ╧╧№ ╧ Є/ № № ╧ / ╧╧№ ╧ Є/ ЁЁ ╧ ╠╧№╠╧ "/ № № ╧ / ╠╧№ ╧ "/ ЁЁ ╧ ╧№№ ╧ " № № ╧ Є ╧№№ ╧ " ЁЁ ╧ ╧№№ ╧ Є/ № № ╧ "/ ╧№№ ╧ Є/ ЁЁ / ╠╠№╠╧ Є/ № №╠ " ╠╠№╠ Є/ ЁЁ / Є/ Є Є/ ЁЁ / "/ / "/ ЁЁ / " / " ЁЁ / "/ / "/ ЁЁ / Є/ / Є/ ЁЁ / " Є " ЁЁ / "/ ЁЁ / № " № ЁЁ / № Є № ЁЁ / № / № ЁЁ / № / № ЁЁ / № / № ЁЁ / № / № ЁЁ / № Є № ЁЁ ╧ № "/ № ЁЁ ╧ Є ╧ Є ЁЁ ╧ Є ╧ Є ЁЁ ╧ Є ╧ Є ЁЁ ╧ Є ╧ Є ЁЁ ╧ Є ╧ Є ЁЁ ╧ Є ╧ Є ЁЁ ╧ Є ╧ Є ЁЁ №╠╧№╠ / Є ╧ Є ЁЁ № ╧№ / Є / Є ЁЁ № ╠╠ """" Є / Є ЁЁ № ╧№ Є / Є ЁЁ № ╧╧№ Є / Є ЁЁ ╠╧╠╠ """" Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є / Є ЁЁ ╧ Є №╠╧№╠ / Є ЁЁ ╧ Є № ╧№ / Є ЁЁ ╧ Є № ╧№ / Є ЁЁ / Є № ╧№ / Є ЁЁ / Є № ╧╧№ / Є ЁЁ №╠ ╠╧ / Є ╠╧╠╧ / Є ЁЁ № № ╧ / Є / Є ЁЁ № №╠╧ / Є / Є ЁЁ № № ╧ / Є / Є ЁЁ № № ╧ / Є / Є ЁЁ № №╠╧ / Є / Є ЁЁ / Є / Є ЁЁ / Є / Є ЁЁ / Є Є / / Є ЁЁ / Є Є / / Є ЁЁ / Є Є / / Є ЁЁ №/ Є ╠ Є / №╧ №/ Є ЁЁ Є"""""""""""""""""""╠╠╠╠ Є Є Є Є№╠╠╠┬""""""""""""""""""""""""""""""/ Є"""""""""""""""""""╠╠╠╠Є" ",╠╠╠┬""""""""""""""""""""""""""""""""""""""" ЁЁ / Є/ Є/ Є/ Є ╠╠ №┬╧ Є / ╠, ╠╠ ЁЁ / Є/ Є/ Є/ Є №╧ ┬ Є / №/ №╧ ЁЁ Є /Є /Є /Є / Є Є / / ЁЁ "" "" "" "" Є / ЁЁ Є / ЁЁ Є / ЁЁ Є / ЁЁ Є / ЁЁ Є / ЁЁ Є / ЁЁ Є ╠╧ / ЁЁ Є №№ № / ЁЁ Є №╠ ╧ / ЁЁ Є № ╧ № / ЁЁ Є № ╧╧№ / ЁЁ Є №╠╧╠╧ / ЁЁ Є / ЁЁ Є / ЁЁ Є / ЁЁ Є / ЁЁ Є / Є / / ЁЁ Є " Є Є/ / ЁЁ Є ЄЄ //ЄЄ / ЁЁ Є"""""""╠╠╠╠ Є ////Є,╠╠╠┬"""/ ЁЁ ЄЄ //// ЁЁ Є/ Є Є ЁЁ / Є Є ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁЁ ╞ш:мR11р.ф┤┤ Ft"t▄ "tC ╠▄ ▄ ( ▄└чААААААААА└└└ААА Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё ЁЁЁЁЁ Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё ЁЁ ЁЁЁЁЁЁ ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁ Ё ЁЁ ЁЁЁ Ё ЁЁЁЁЁЁ ЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁ Ё ЁЁ ЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё Ё Ё ЁЁЁЁЁЁ ЁЁЁ ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё ЁЁЁ ЁЁЁЁЁ ЁЁЁЁЁЁ ЁЁЁ ЁЁЁ ЁЁЁЁЁ Ё Ё ЁЁЁЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё ЁЁЁ ЁЁЁЁЁЁ ЁЁЁЁЁ Ё ЁЁ Ё ЁЁЁ ЁЁЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁЁЁ ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё ЁЁЁЁЁЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁЁЁ ЁЁЁЁЁЁЁЁЁ ЁЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁ Ё Ё ЁЁЁ ЁЁ Ё Ё Ё ЁЁЁЁ Ё Ё Ё ЁЁЁ ЁЁ Ё ЁЁ ЁЁ Ё ЁЁЁ ЁЁ Ё Ё Ё ЁЁЁЁ Ё Ё Ё Ё Ё ЁЁЁ ЁЁ Ё ЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё Ё Ё ЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё ЁЁ Ё ЁЁЁЁ Ё ЁЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁ Ё Ё ЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё ЁЁ Ё ЁЁЁЁ Ё ЁЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁ Ё Ё ЁЁЁ Ё ЁЁЁЁ Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё ЁЁ ЁЁ ЁЁЁЁ ЁЁ ЁЁ ЁЁЁЁ Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё ЁЁЁЁЁЁЁЁ Ё Ё ЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁ ЁЁ Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё ЁЁ ЁЁЁ Ё ЁЁ ЁЁ Ё Ё Ё Ё ЁЁ Ё ЁЁ ЁЁ Ё Ё ЁЁ Ё Ё ЁЁ ЁЁ ЁЁ Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё ЁЁ ЁЁ Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ╞ш:мR11р.ф┤┤ Ft"t▄ "tC ╠▄ ▄ ( ▄└чААААААААА└└└ААА Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё ЁЁЁЁЁ Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё ЁЁ ЁЁЁЁЁЁ ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁ Ё ЁЁ ЁЁЁ Ё ЁЁЁЁЁЁ ЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁ Ё ЁЁ ЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё Ё Ё ЁЁЁЁЁЁ ЁЁЁ ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё ЁЁЁ ЁЁЁЁЁ ЁЁЁЁЁЁ ЁЁЁ ЁЁЁ ЁЁЁЁЁ Ё Ё ЁЁЁЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё ЁЁЁ ЁЁЁЁЁЁ ЁЁЁЁЁ Ё ЁЁ Ё ЁЁЁ ЁЁЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁЁЁ ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё ЁЁЁЁЁЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁЁЁ ЁЁЁЁЁЁЁЁЁ ЁЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁ Ё Ё ЁЁЁ ЁЁ Ё Ё Ё ЁЁЁЁ Ё Ё Ё ЁЁЁ ЁЁ Ё ЁЁ ЁЁ Ё ЁЁЁ ЁЁ Ё Ё Ё ЁЁЁЁ Ё Ё Ё Ё Ё ЁЁЁ ЁЁ Ё ЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё Ё Ё ЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё ЁЁ Ё ЁЁЁЁ Ё ЁЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁ Ё Ё ЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё ЁЁ Ё ЁЁЁЁ Ё ЁЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁ Ё Ё ЁЁЁ Ё ЁЁЁЁ Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё ЁЁ ЁЁ ЁЁЁЁ ЁЁ ЁЁ ЁЁЁЁ Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё ЁЁЁЁЁЁЁЁ Ё Ё ЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁ Ё ЁЁ Ё ЁЁЁ Ё ЁЁ Ё Ё ЁЁ Ё Ё ЁЁ ЁЁ Ё ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ Ё Ё Ё Ё Ё Ё ЁЁЁЁ Ё ЁЁ ЁЁ Ё Ё Ё ЁЁ ╞ш:мR11р.ф┤┤ Ft"t▄ "tC ╠▄ ▄ ( ▄└чААААААААА└└└ААА Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё ЁЁЁЁЁ Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё ЁЁ ЁЁЁЁЁЁ ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁ Ё ЁЁ ЁЁЁ Ё ЁЁЁЁЁЁ ЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁ Ё ЁЁ ЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё Ё Ё ЁЁЁЁЁЁ ЁЁЁ ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё ЁЁЁ ЁЁЁЁЁ ЁЁЁЁЁЁ ЁЁЁ ЁЁЁ ЁЁЁЁЁ Ё Ё ЁЁЁЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё ЁЁЁ ЁЁЁЁЁЁ ЁЁЁЁЁ Ё ЁЁ Ё ЁЁЁ ЁЁЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁЁЁ ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё ЁЁЁЁЁЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁЁЁ ЁЁЁЁЁЁЁЁЁ ЁЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁ Ё Ё ЁЁЁ ЁЁ Ё Ё Ё ЁЁЁЁ Ё Ё Ё ЁЁЁ ЁЁ Ё ЁЁ ЁЁ Ё ЁЁЁ ЁЁ Ё Ё Ё ЁЁЁЁ Ё Ё Ё Ё Ё ЁЁЁ ЁЁ Ё ЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё Ё Ё ЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё ЁЁ Ё ЁЁЁЁ Ё ЁЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁ Ё Ё ЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё ЁЁ Ё ЁЁЁЁ Ё ЁЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁ Ё Ё ЁЁЁ Ё ЁЁЁЁ Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё ЁЁ ЁЁ ЁЁЁЁ ЁЁ ЁЁ ЁЁЁЁ Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё ЁЁЁЁЁЁЁЁ Ё Ё ЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ ЁЁ Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё ЁЁ ЁЁЁ Ё Ё ЁЁ ЁЁ Ё Ё Ё ЁЁ Ё ЁЁ ЁЁ Ё Ё ЁЁ Ё Ё ЁЁ ЁЁ Ё Ё ЁЁ Ё ЁЁ Ё ЁЁ ЁЁ ЁЁЁ Ё Ё Ё Ё Ё Ё ЁЁ ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё ╞ш:мR11р.ф┤┤ Ft"t▄ "tC ╠▄ ▄ ( ▄└чААААААААА└└└ААА Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё ЁЁЁЁЁ Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё ЁЁ ЁЁЁЁЁЁ ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁ Ё ЁЁ ЁЁЁ Ё ЁЁЁЁЁЁ ЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁ Ё ЁЁ ЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁЁЁ Ё ЁЁЁ ЁЁЁ ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё Ё Ё ЁЁЁЁЁЁ ЁЁЁ ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё ЁЁЁ ЁЁЁЁЁ ЁЁЁЁЁЁ ЁЁЁ ЁЁЁ ЁЁЁЁЁ Ё Ё ЁЁЁЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё ЁЁЁ ЁЁЁЁЁЁ ЁЁЁЁЁ Ё ЁЁ Ё ЁЁЁ ЁЁЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁЁЁ ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё ЁЁЁЁЁЁЁЁЁ Ё ЁЁЁЁЁЁ ЁЁЁЁ ЁЁЁЁЁЁЁЁЁ ЁЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁ Ё ЁЁЁЁЁ Ё ЁЁ Ё Ё ЁЁЁ ЁЁ Ё Ё Ё ЁЁЁЁ Ё Ё Ё ЁЁЁ ЁЁ Ё ЁЁ ЁЁ Ё ЁЁЁ ЁЁ Ё Ё Ё ЁЁЁЁ Ё Ё Ё Ё Ё ЁЁЁ ЁЁ Ё ЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё Ё Ё ЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё ЁЁ Ё ЁЁЁЁ Ё ЁЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁ Ё Ё ЁЁЁЁ Ё ЁЁЁЁЁЁ Ё ЁЁ Ё ЁЁ Ё ЁЁЁЁ Ё ЁЁЁЁ Ё Ё ЁЁЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁ Ё Ё ЁЁЁ Ё ЁЁЁЁ Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё ЁЁ ЁЁ ЁЁЁЁ ЁЁ ЁЁ ЁЁЁЁ Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё ЁЁЁЁЁЁЁЁ Ё Ё ЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁЁЁЁЁЁ Ё ЁЁЁЁЁЁЁЁ Ё Ё ЁЁ ЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё Ё ЁЁ Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё ЁЁ ЁЁЁ Ё Ё ЁЁ ЁЁ Ё Ё ЁЁ ЁЁ ЁЁ ЁЁ Ё ЁЁ ЁЁ ЁЁ Ё Ё Ё Ё ЁЁ Ё ЁЁ ЁЁ ЁЁ Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё ╞ш:мR11р.ф┤┤ Ft"t▄ "tC ╠▄ ▄ ( ▄└чААААААААА└└└ААА Ё ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁЁ Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё ЁЁЁ Ё Ё Ё Ё Ё ЁЁЁЁЁ Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁ ЁЁЁЁ ЁЁЁЁЁЁ Ё Ё ЁЁ ЁЁ ЁЁЁЁ Ё Ё ЁЁЁЁЁЁЁ Ё Ё Ё Ё Ё Ё ЁЁ ЁЁ ЁЁЁЁЁЁ ЁЁЁЁ Ё Ё Ё ЁЁ ЁЁ ЁЁЁЁЁЁ ЁЁ Ё ЁЁ ЁЁЁ Ё Ё Ё Ё ЁЁЁЁЁЁ ЁЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё Ё Ё Ё Ё ЁЁЁЁЁЁЁ Ё ЁЁ Ё Ё Ё Ё ЁЁЁЁЁЁЁ ЁЁ Ё Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁЁЁ Ё Ё ЁЁ Ё Ё ЁЁЁЁЁЁ ЁЁ Ё Ё ЁЁЁ Ё Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё ЁЁЁЁЁ Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё ЁЁ Ё Ё ЁЁ Ё Ё Ё ЁЁЁ Ё Ё Ё Ё Ё ЁЁ ЁЁ Ё ЁЁ ЁЁ Ё ЁЁ ЁЁ Ё Ё Ё ЁЁ ЁЁ Ё ЁЁ ЁЁ Ё Ё Ё ЁЁЁЁ Ё Ё Ё Ё Ё ЁЁ ЁЁ ЁЁ ЁЁ Ё Ё Ё ЁЁ ЁЁ ЁЁ ЁЁ Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁ ЁЁ ЁЁ Ё ЁЁ Ё ЁЁ Ё ЁЁ ЁЁ ЁЁ Ё ЁЁ Ё Ё ЁЁ ЁЁ ЁЁ ЁЁ Ё Ё ЁЁ Ё ЁЁ Ё ЁЁ Ё ЁЁ ЁЁ Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁ Ё ЁЁ ЁЁ ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁ Ё ЁЁ ЁЁ Ё ЁЁ ЁЁ Ё Ё ЁЁ ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё ЁЁ Ё ЁЁ Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё ЁЁ Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё Ё